

 2022-D079891 Revision: 02

cynapse®
Beckhoff PLC – Beckhoff IO-Link master

Getting started

 cynapse®

 2022-D079891 Revision: 02

WITTENSTEIN alpha GmbH
Walter-Wittenstein-Straße 1
D-97999 Igersheim
Germany

Cybertronic support
If you have questions about this implementation example, please contact:
cybertronic-support@wittenstein.de

Customer service

© WITTENSTEIN alpha GmbH 2022

Subject to technical and content changes without notice.

cynapse®

Revision: 02 2022-D079891 en-1

Table of contents
1 About this manual ... 2

1.1 Information symbols and cross references ... 2
2 Hardware structure .. 3
3 Commissioning in TwinCAT3 ... 4

3.1 Configuration .. 4
3.2 Inserting connected devices ... 5
3.3 Configuration of the IO-Link master EL6224 .. 6
3.4 Importing the device description IODD ... 7
3.5 Creating a PLC program ... 9
3.6 Activating the configuration .. 10

4 Access to IO-Link data .. 11
4.1 Reading process data ... 11
4.2 Configure the process data format ... 12
4.3 Writing and reading parameters ... 13
4.4 Sample project: Reading/writing parameters .. 14
4.5 Blob transfer ... 16
4.6 Events ... 22

4.6.1 Reading out events using “Diag History” ... 22
4.6.2 Read out events using the “Detailed Device Status” parameter ... 23

 cynapse®

en-2 2022-D079891 Revision: 02

1 About this manual
This guide contains procedures for the exemplary use of the WITTENSTEIN sensor cynapse®.
This guide uses example code. If you require any code examples, please contact:
cybertronic-support@wittenstein.de

The original was prepared in German, all other language versions are translations of the original
instructions.

1.1 Information symbols and cross references
The following information symbols are used:
• Indicates an action to be performed
 Indicates the results of an action
 Provides additional handling information
A cross reference refers to the chapter number and the header of the target section
(e. g. chapter 2 “Hardware structure”).
A cross reference on a table refers to the table number (e. g. Table “Tbl-1”).

cynapse®

Revision: 02 2022-D079891 en-3

2 Hardware structure
The following hardware components were used for the sample project:

Control: Beckhoff C6930
IO-LINK master: Beckhoff EL6224
IO-LINK device: WITTENSTEIN cynapse®

Figure 1 shows the schematic representation of the structure. The IO-Link master EL6224 is
connected to a bus coupler EK1100, which in turn is connected to the control unit C6930 by
means of EtherCAT (green). WITTENSTEIN cynapse® is connected to port 1 of the IO-Link
master (black).

Figure 1: Schematic diagram

 cynapse®

en-4 2022-D079891 Revision: 02

3 Commissioning in TwinCAT3
To commission cynapse® you need a new TwinCAT project. In addition, the following are
required:
 A network port on the controller is configured as an EtherCAT port.
 TwinCAT development environment is installed.
 The hardware structure has been carried out according to Chapter 2.

3.1 Configuration

Open the TwinCAT development environment (Visual Studio) and create a new TwinCAT project
via “File” “New” “Project...”. The new project is visible in the project folder explorer.
It is possible to use the TwinCAT “locally” on the C6390 or “remotely” from an engineering PC.
In this implementation example, TwinCAT is used “locally”.

Figure 2: Project folder explorer

cynapse®

Revision: 02 2022-D079891 en-5

3.2 Inserting connected devices
In order to insert the connected devices, TwinCAT must be placed in “Conti Mode”, if it is not

already in it. To do this, click on the symbol or select “Restart TwinCAT (Config Mode)” from
the “TWINCAT” menu . Then, in the project folder explorer, you can select the “Devices”
located within the “I/O” item and either right-click to open a context menu and select “Scan” or

click on the icon in the menu bar to start the action.

Figure 3: Select “Scan”

The following message must be confirmed and the “EtherCAT” devices must be selected in the
dialog shown in Figure 4

Figure 4: Selection of I/O devices to be integrated

 cynapse®

en-6 2022-D079891 Revision: 02

The following message “Search for new boxes” must also be confirmed in order to search for the
terminals connected to the devices.
Based on the configuration described here, the result is as follows:

Figure 5: Configuring the TwinCAT 3 environment

 There is now an EtherCAT device in the “Devices” item (here: Device 2 (EtherCAT)).

Again, the bus coupler EK1100 and the IO-Link master EL6224 are attached to this.

3.3 Configuration of the IO-Link master EL6224
Double-clicking on the EL6224 IO-Link master in the project folder explorer opens the terminal
configuration menu. When creating the IO-Link master, an additional tab called “IO-Link” is
created.

Figure 6: “IO-Link” tab

There are several possibilities for integrating the connected IO-Link device, here
WITTENSTEIN cynapse®. At the beginning, the device description IODD is integrated.

cynapse®

Revision: 02 2022-D079891 en-7

3.4 Importing the device description IODD

Importing the device description simplifies the integration of the IO-Link device. With the help of
the IODD (IO Device Description), the individual process data are broken down and a simple
parameterization of the sensor is made possible. The IODD only has to be imported when a new
IO-Link device is first commissioned. The import of the IODD is port-independent.

To insert the device description, there are the following two options:

Using the “Import DeviceDescription” function
This method requires that the required IODD is present. The current IODD of cynapse® can be
obtained from:
 IODD Finder (https://ioddfinder.io-link.com)

When importing the IODD using the “Import DeviceDescription” button, you should do the
following:

1. Press the “Import DeviceDescription” button in the “IO-Link” tab
2. Select and open the .xml file of the desired sensor
3. The imported files are stored in the \TwinCAT\3.X\Config\IO\IOLink folder. It is important not to

copy the files directly into this folder, but to have them read in via “Import DeviceDescription”,
otherwise important checks are bypassed!

4. Online configuration: If the IO-Link device is connected, it is created automatically with the
corresponding parameters by clicking on “Scan devices”.

5. Offline configuration: After successful import, the IODD is displayed in the “Catalog” area.
This can be assigned to a port by right-clicking on the corresponding device. Another way of
assigning is to drag & drop the device from the catalog to the desired port.

6. Restart the EtherCAT system or reload the configuration in Config mode
7. The IO-Link devices are displayed and the process data is created.

 cynapse®

en-8 2022-D079891 Revision: 02

Using the IODD Finder
Another way to load the IODD is by clicking on the “IODD Finder” button. Clicking on it
establishes a connection to the portal IODD Finder and displays all IO-Link devices stored there
in a list. You can search for the desired sensor by filtering the list.

Figure 7: IODD Finder

Two entries for cynapse® are found. For new cynapse® sensors, please use the current version

with the device ID “3”. Click on the button to download the IODD. An internet connection is
necessary for this. Subsequently, the IODD is in the catalog and can be assigned to a port as
described in Chapter 3.4 from point 4.

cynapse®

Revision: 02 2022-D079891 en-9

3.5 Creating a PLC program

To create a programming environment, a new PLC subproject must be added from the context
menu of “PLC” in the project folder explorer by selecting “Add New Item...”:

Figure 8: Creating a PLC program

In the subsequent dialog, a “Standard PLC Project” is selected and a project name
(e.g. “cynapse_example_project”) is assigned. Selecting “Standard PLC Project” automatically
creates the “Main” program. This can be opened by double-clicking on the PLC subproject
“cynapse_example_project” in “POUs”. A global variable list (GVL) is also created. Here you have
to create sample variables for the continued procedure, which can then be linked with the input
variables of cynapse®:

Figure 9: Creation of global variables

 cynapse®

en-10 2022-D079891 Revision: 02

After the PLC project has been compiled via “Build”, the variables marked “AT%” are present in
the “Assignments” and can be linked to the EtherCAT input variables.

Through right-clicking on the respective variable, a window for selecting its link is opened via
“Change link...”.

Figure 10: Create links between PLC variable and process objects

3.6 Activating the configuration

By activating the configuration via “TWINCAT” “Activate configuration” or by clicking on the
symbol , the TwinCAT control is set to run mode and the process data from cynapse® is
interrogated cyclically.

cynapse®

Revision: 02 2022-D079891 en-11

4 Access to IO-Link data
The Beckhoff IO-Link master terminal EL6224 is divided into two services. On the one hand,
it provides an IO-Link master for the connected sensors, on the other hand, it is an EtherCAT
slave of the higher-level TwinCAT master.
In principle, cyclic and acyclic data are exchanged between the IO-Link master and the IO-Link
slave. From the perspective of the EtherCAT master, the cyclic process data can be accessed via
the PDOs. The access to the acyclic data (blob, parameters and events) takes place via AoE.

4.1 Reading process data
After successful configuration of the respective IO-Link port, the process data is displayed in the
“Process data” tab after a restart of the EtherCAT system. The process data are interrogated
cyclically in the set system clock and can be linked to PLC variables for further use.

Figure 11: “Process data” tab

WITTENSTEIN cynapse® transmits process data on the current temperature, as well as various
acceleration parameters. Various process data formats are provided in order to offer different
characteristic data with a constant process data length of 16 bytes. The process data format is
configured as described in Chapter 4.2.
cynapse® does not use any outgoing process data (from the point of view of the IO-Link master).
For more information on the process data, please refer to the cynapse® operating manual.

 cynapse®

en-12 2022-D079891 Revision: 02

4.2 Configure the process data format
cynapse® offers various process data formats. The process data length does not change.
The process data format can be changed via the parameter “Settings” (index 0x60, subindex
0x09). The parameter can be changed via the PLC program (see chapter 4.4) or in the port
configuration of the IO-Link master. This is done by right-clicking on the corresponding port in the
“IO-Link” tab and then clicking on “Parameters”.

Figure 12: Open “Parameters” tab

There, all parameters of cynapse® can be read or written. When changing the process data
format, note that the names of the process data are not changed. These are always the same
regardless of the selected process data format. For more information on the available process
data formats, see the cynapse® operating manual.

Figure 13: Changing the process data format

cynapse®

Revision: 02 2022-D079891 en-13

4.3 Writing and reading parameters
cynapse® supports parameterization by ISDU (Indexed Service Data Unit). These acyclic
parameters must be explicitly requested or sent via the PLC. Access is via ADS or CoE.
The following describes how to read and write parameters using ADS.

An ADS address always consists of NetID and port number. An ADS command is sent from
TwinCAT via AoE (ADS over EtherCAT) to the IO-Link master AL1330 and from there forwarded
to the demand data channel.

AoE NetID
The EtherCAT slave AL1330 has its own NetID for communication. This can be looked up in the
terminal configuration in the “EtherCAT” tab under “Advanced settings” -> “Mailbox” -> “AoE”.

Figure 14: ADS address

Port number
The assignment of the query to a single IO-Link port takes place via the port number.
The port number is assigned ascending from 0x1000. IO-Link port 1 thus corresponds to 0x1000
and IO-Link port n corresponds to port number 0x1000+n-1.

For the terminal EL6224 with 4 IO-Link ports used here, the following definition applies

IO-Link Port 1 port number 0x1000

IO-Link Port 2 port number 0x1001

IO-Link Port 3 port number 0x1002

IO-Link Port 4 port number 0x1003

 cynapse®

en-14 2022-D079891 Revision: 02

ADS index group
The index group of an ADS command is set to 0xF302 for the IO-Link demand data channel.

ADS index offset
In index offset, the IO-Link addressing is encoded with index and subindex.
The index offset is 4-byte in size and is divided as follows:

- Bit 16-31: Index
- Bit 8-15: reserved
- Bit 0-7: Subindex

Example: Index 0x005D and subindex 0x02 equals index offset 0x005D0002

The available acyclic parameters can be read in the cynapse® operating manual.

4.4 Sample project: Reading/writing parameters
The following describes how parameters can be read or written via AoE using the function
modules “ADSRead” and “ADSWrite”.

The two modules “ADSRead” and “ADSWrite” are part of the Beckhoff own library
“TC2_Standard”. By default, the library is loaded when a PLC project is rebuilt.

The following example demonstrates how to write and read the “Operating temperature
threshold” parameter using the “ADSREAD” and “ADSWRITE” function blocks. First, a new
threshold value is written with the instance “fbIOLWrite” of the “ADSWrite” module and then read
for verification with the instance “fbIOLRead”.

 The complete sample project is available on request at:

cybertronic-support@wittenstein.de

Declaration part:
PROGRAM MAIN
VAR
 fbIOLRead : ADSRead;
 fbIOLWrite : ADSWrite;

 iState : INT;
 bExecute : BOOL;

 rTemperatureThresholdWrite : REAL := 40; //°C
 rTemperatureThresholdRead : REAL;

 bBusy : BOOL;
 bError : BOOL;
 nErrID : UDINT;
END_VAR

cynapse®

Revision: 02 2022-D079891 en-15

Implementation:
CASE iState OF
0 : IF bExecute THEN
 bBusy := TRUE;
 bError := FALSE;
 nErrID := 0;

 // Write new Process Data Profile to cynapse®

 fbIOLWrite(
 NETID:='172.18.128.211.3.3', //AoE-NetID EL6224
 PORT:= 16#1000, //PortNo IO-Link Port
 IDXGRP:= 16#F302, //Defined by Beckhoff
 IDXOFFS:= 16#00520000, //Index = 0x0052 and Subindex = 0x00
 LEN:= SIZEOF(rTemperatureThresholdWrite),
 SRCADDR:= ADR(rTemperatureThresholdWrite),
 WRITE := TRUE);

 iState := 1;
 END_IF

1 : fbIOLWrite(WRITE := FALSE, BUSY=>bBusy, ERR=>bError, ERRID=>nErrID);

 IF NOT bBusy THEN
 IF NOT bError THEN
 iState := 2; //Success
 ELSE
 iState := 100; //Error
 END_IF
 END_IF

2 : //Read Process Data Profile
 fbIOLRead(
 NETID:='172.18.128.211.3.3', //AoE-NetID EL6224
 PORT:= 16#1000, //PortNo IO-Link Port
 IDXGRP:= 16#F302, //Defined by Beckhoff
 IDXOFFS:= 16#00520000, //Index = 0x0052 and Subindex = 0x00
 LEN:= SIZEOF(rTemperatureThresholdRead),
 DESTADDR:= ADR(rTemperatureThresholdRead),
 READ := TRUE);

 iState := 3;

3 : fbIOLRead(READ := FALSE, BUSY=>bBusy, ERR=>bError, ERRID=>nErrID);

 IF NOT bBusy THEN
 IF NOT bError THEN
 iState := 4; //Success
 ELSE
 iState := 100; //Error
 END_IF
 END_IF

4 : //Compare Read and Write Value
 IF rTemperatureThresholdRead = rTemperatureThresholdWrite THEN
 iState := 0; //Success
 ELSE
 iState := 100; //Error
 END_IF

 cynapse®

en-16 2022-D079891 Revision: 02

 bExecute := FALSE;

100 : //Implement Error Handler here

END_CASE

4.5 Blob transfer
IO-Link defines the exchange of larger amounts of data by the BLOB (Binary Large Object)
Transfer Profile. cynapse® uses this to send collected data. The transfer is on request. Different
data packages are provided by cynapse®, these can be found in the cynapse® operating manual.

The transmission of the acceleration data package is described in more detail below:

In addition to the raw data of the acceleration sensor, the data package contains the status of the
four operating time counters and the temperature at the time of the measurement recording.

At the beginning, the data package must first be requested via the command “Request
acceleration data package”. For this purpose, the value 0xA8 is sent via the IO-Link Index 0x02
by means of the “ADSWRITE”. Once this has been done, the data package can then be read out
via blob with ID -4097. The sequence of the blob transfer is shown schematically in Figure 15.

Figure 15: BLOB transfer flow

cynapse®

Revision: 02 2022-D079891 en-17

After requesting the acceleration data package, the command “BLOB Abort” is written.
The communication always runs during the BLOB transfer via the IO-Link Index 0x32 “BLOB
Channel”. The required transmission objects are listed in Figure 12. For more information,
see the “IO-Link Profile BLBs & FW-Update Specification”. The “BLOB Abort” command
terminates all active BLOB transfers and resets the sensor’s “BLOB state machine”.
The command is not required and is used to avoid errors.

The “BLOB start” object is then sent together with the “BLOB ID”. The “BLOB IDs” supported by
cynapse® can be found in the operating manual. cynapse® then returns the length of the blob to
be read as “BLOB info”. The actual measurement data are stored in segments with a maximum
length of 232 bytes, the first byte containing no measurement data, but the number of transmitted
segments.

During segment transfer, a cyclic redundancy check (CRC: cyclic redundancy check) is
performed and then matched to the CRC value from cynapse®. This allows a data loss during
transmission to be detected. The BLOB transfer is finished with the command “BLOB finish”.

The following example program shows the sequence of the blob transfer in structured text (ST).

 The project with the two modules FB_BLOB_Read and CRC_Gen (calculation of the CRC

value) can be obtained on request at cybertronic-support@wittenstein.de

The program provides a buffer “ptBlobData” of 600000 bytes, which is the maximum length of
a BLOB of cynapse®. Depending on the BLOB ID selected, this buffer can be made smaller.
See the cynapse® operating manual.

Declaration part
FUNCTION_BLOCK FB_BLOB_Read
VAR_INPUT
 IOLMasterNetID : T_AmsNetID; // NetID IO-Link master
 uiIOLPort : UINT; // IO-Link Port
 bExecute : BOOL;

 ptBlobData : POINTER TO ARRAY[0..600000] OF BYTE;
END_VAR

VAR_OUTPUT
 bError : BOOL;
 bBusy : BOOL;
 bDone : BOOL;
 ErrID : UDINT;
 RD_length : UDINT;
END_VAR

VAR
 BlobData : ARRAY[0..600000] OF BYTE; //Blob Data
 iStep : INT;

 rTrigExecute : R_TRIG;
 fbTrigDataPackage : ADSWRITE; //FB Request Acceleration Data Package
 DataPackage : BYTE := 16#A8; //Request Acceleration Data Package
 tWaitTimer : TON;

 cynapse®

en-18 2022-D079891 Revision: 02

 fbBlobWrite : ADSWRITE;
 fbBLOBRead : ADSREADEX;

 BlobAbort : BYTE := 16#F0;
 BlobFinish : BYTE := 16#F2;
 BlobStart : ARRAY[0..2] OF BYTE;
 BlobRead : ARRAY[0..255] OF BYTE;
 BlobCRC : ARRAY[0..4] OF BYTE;

 l_Blob_ID : INT := -4097; //ID for BLOB Transfer

 ptrBlobBuffer : POINTER TO BYTE;
 udiBlobLength : UDINT;
 i : INT;
 iSgmtCnt : INT;
 udiCnt: UDINT;
 dwBlobLength : DWORD;
 CRC : DWORD;
 dwBlobCRC : DWORD;
END_VAR

Implementation:
//Function Block ADSWrite: Request Acceleration Data Package 0xA8
fbTrigDataPackage(
 NETID:= IOLMasterNetID,
 PORT:= uiIOLPort,
 IDXGRP:= 16#F302, //Indexgrp of ADS command is specified as 0xF302 for the IO
link data channel
 IDXOFFS:= 16#020000, //IOLink-Index 0x02 Subindex 0x0 (System Command)
 LEN:= SIZEOF(DataPackage),
 SRCADDR:= ADR(DataPackage));

//Function Block ADSWrite: Write Blobchannel
fbBlobWrite(
 NETID:= IOLMasterNetID,
 PORT:= uiIOLPort,
 IDXGRP:= 16#F302, //Defined by Beckhoff
 IDXOFFS := 16#320000 //IOLink-Index 0x32 Subindex 0x0 (Blob Channel)
);

//Function Block ADSRead: Read BlobChannel
fbBlobRead(
 NETID:= IOLMasterNetID,
 PORT:= uiIOLPort,
 IDXGRP:= 16#F302, //Defined by Beckhoff
 IDXOFFS := 16#320000 //IOLink-Index 0x32 Subindex 0x0 (Blob Channel)
);

//Error Handling
IF fbTrigDataPackage.ERR THEN
 iStep := 1000;
 ErrID := fbTrigDataPackage.ERRID;
END_IF

IF fbBlobRead.ERR THEN
 iStep := 1000;
 ErrID := fbBlobRead.ERRID;
END_IF

IF fbBlobWrite.ERR THEN
 iStep := 1000;

cynapse®

Revision: 02 2022-D079891 en-19

 ErrID := fbBlobWrite.ERRID;
END_IF

//***
// BLOB-Data Command
//***
//Wait for rising Edge bExecute
rTrigExecute(CLK:= bExecute);

CASE iStep OF
0 : //Wait for bExecute (rising Edge)
 IF rTrigExecute.Q THEN
 bBusy := TRUE;
 bError := FALSE;
 fbTrigDataPackage.WRITE := TRUE;
 iStep := 10;
 END_IF

 bDone := FALSE;

10: //Set Trigger to request Acceleration Data Package
 IF NOT fbTrigDataPackage.BUSY THEN
 fbTrigDataPackage.WRITE := FALSE;
 tWaitTimer.IN := TRUE;
 iStep := 20;
 END_IF

20: // Wait for 1s till Data Package is generated
 tWaitTimer(PT:= T#1000MS);
 IF tWaitTimer.Q THEN
 tWaitTimer.IN := FALSE;
 //Write BlobAbort to close transmission channel
 fbBlobWrite.LEN := SIZEOF(BlobAbort);
 fbBlobWrite.SRCADDR := ADR(BlobAbort);
 fbBlobWrite.WRITE := TRUE;
 iStep := 30;
 END_IF

30: IF NOT fbBlobWrite.BUSY THEN
 fbBlobWrite.WRITE := FALSE;
 iStep := 40;
 END_IF

40: //Write BlobStart to establish transmission channel for Blob ID -4097
 BlobStart[0] := 16#F1; //BLOBStart
 BlobStart[1] := INT_TO_BYTE(SHR(l_Blob_ID,8));
 BlobStart[2] := INT_TO_BYTE(l_Blob_ID);
 fbBlobWrite.LEN := SIZEOF(BlobStart);
 fbBlobWrite.SRCADDR := ADR(BlobStart);
 fbBlobWrite.WRITE := TRUE;
 iStep := 50;

50: IF NOT fbBlobWrite.BUSY THEN
 fbBlobWrite.WRITE := FALSE;

 //Read Blob Info
 fbBlobRead.LEN := SIZEOF(BlobRead);
 fbBlobRead.DESTADDR := ADR(BlobRead);
 fbBlobRead.READ := TRUE;
 iStep := 60;
 END_IF

 cynapse®

en-20 2022-D079891 Revision: 02

60: IF NOT fbBlobRead.BUSY THEN
 fbBlobRead.READ := FALSE;

 //The Blob Read Info contains the BLOB Length in 4 Octets (32Bit)
 dwBlobLength := SHL(BlobRead[1], 24) OR SHL(BlobRead[2], 16) OR
 SHL(BlobRead[3], 8) OR BlobRead[4];

 //Set BlobLength Counter to ZERO
 udiBlobLength := 0;
 //Set Segment Counter to ZERO
 iSgmtCnt := 0;
 //Initialize Pointer to BlobData
 ptrBlobBuffer := ADR(BlobData);
 iStep := 70;
 END_IF

70: //Read Blob Segment
 fbBlobRead.READ := TRUE;
 iStep := 80;

80: IF NOT fbBlobRead.BUSY THEN
 fbBlobRead.READ := FALSE;

 //Write BlobSegment to Array BlobData
 FOR udiCnt := 1 TO fbBlobRead.COUNT_R - 1 DO
 ptrBlobBuffer := ADR(BlobData)+udiBlobLength+SIZEOF(BYTE)*(udiCnt - 1);
 ptrBlobBuffer^ := BlobRead[udiCnt];
 END_FOR

 //Calculate overall length of BLOB Data
 udiBlobLength := udiBlobLength + (fbBlobRead.COUNT_R - 1);

 iStep := 81;
 END_IF

81: //CRC Check
 IF iSgmtCnt = 0 AND BlobRead[0] <> 16#30 THEN
 //calculate CRC signature by Function CRC_GEN for Initial Segment
 CRC := CRC_GEN(PT:=ADR(BlobRead[1]),
 SIZE:=UDINT_TO_INT(fbBlobRead.COUNT_R-1), PL := 32,
 PN := 16#741B8CD7, INIT:=16#7FFFFFFF, REV_IN:= TRUE,
 REV_OUT:= FALSE, XOR_OUT:= 16#0);
 iStep := 70;
 ELSIF BlobRead[0] = 16#30 AND iSgmtCnt > 0 THEN
 //calculate CRC signature by Function CRC_GEN for Last Segment
 CRC := CRC_GEN(PT:=ADR(BlobRead[1]),
 SIZE:=UDINT_TO_INT(fbBlobRead.COUNT_R-1), PL := 32,
 PN := 16#741B8CD7, INIT:=CRC, REV_IN:= TRUE, REV_OUT:= TRUE,
 XOR_OUT:= 16#FFFFFFFF);
 iStep := 85;
 ELSIF BlobRead[0] = 16#30 AND iSgmtCnt = 0 THEN
 //calculate CRC signature by Function CRC_GEN
 CRC := CRC_GEN(PT:=ADR(BlobRead[1]),
 SIZE:=UDINT_TO_INT(fbBlobRead.COUNT_R-1), PL := 32,
 PN := 16#741B8CD7, INIT:=16#7FFFFFFF, REV_IN:= TRUE,
 REV_OUT:= TRUE, XOR_OUT:= 16#FFFFFFFF);
 iStep := 85;
 ELSE
 //calculate CRC signature by Function CRC_GEN
 CRC := CRC_GEN(PT:=ADR(BlobRead[1]),

cynapse®

Revision: 02 2022-D079891 en-21

 SIZE:=UDINT_TO_INT(fbBlobRead.COUNT_R-1), PL := 32,
 PN := 16#741B8CD7, INIT:=CRC, REV_IN:= TRUE, REV_OUT:= FALSE,
 XOR_OUT:= 16#0);
 iStep := 70;
 END_IF

 //increment Segment Counter
 iSgmtCnt := iSgmtCnt + 1;

85: //CRC CHECK
 //calculate CRC signature by Function CRC_GEN
 // Read CRC signature from cynapse® 0x40
 fbBlobRead.LEN := SIZEOF(BlobCRC);
 fbBlobRead.DESTADDR := ADR(BlobCRC);
 fbBlobRead.READ := TRUE;
 iStep := 86;

86: IF NOT fbBlobRead.BUSY THEN
 fbBlobRead.READ := FALSE;

 // The Blob CRC contains the BLOB signature in 4 Octets (32Bit)
 dwBlobCRC := SHL(BlobCRC[1], 24) OR SHL(BlobCRC[2], 16) OR
 SHL(BlobCRC[3], 8) OR BlobCRC[4];

 IF CRC = dwBlobCRC THEN
 iStep := 90;
 ELSE
 // if not CRC = dwBlobCRC then generate Error Message
 iStep := 1000;
 END_IF
 END_IF

90: //Write BLOB Finish 0xF2
 fbBlobWrite.LEN := SIZEOF(BlobFinish);
 fbBlobWrite.SRCADDR := ADR(BlobFinish);
 fbBlobWrite.WRITE := TRUE;
 iStep := 100;

100:IF NOT fbBlobWrite.BUSY THEN
 fbBlobWrite.WRITE := FALSE;
 bBusy := FALSE;
 bDone := TRUE;
 iStep := 0;
 MEMCPY(ptBlobData,ADR(BlobData),udiBlobLength);
 RD_Length := udiBlobLength;
 END_IF

1000://Errorhandling
 bError := TRUE;
 iStep := 0;
END_CASE

 cynapse®

en-22 2022-D079891 Revision: 02

4.6 Events

cynapse® supplies so-called IO-Link events for selected operating conditions, for example
when vibration or temperature threshold values are exceeded. This can be evaluated by the
higher-level control system.

In IO-Link there are 3 different types of events (Error, Warning, Information). Error and
warning events always have a start (Appear) and an end (Disappear). Thus, event types are
two time-shifted events that are sent by the IO-Link device. Information events are so-called
singleshot events. There is only one event here.

 The events supported by cynapse® are listed in the cynapse® operating manual.

 In order to send events, these must be activated in cynapse®. This release is made via index

0x60. A general event release (subindex 0x01) is necessary and a parameter dependent
release (subindex 0x02 - 0x07) is possible.

4.6.1 Reading out events using “Diag History”
cynapse® forwards events to the IO-Link master. This signals this by setting the status bit
“Device Diag”. Further information about the events can be found in the Diag History tab.

Figure 16: Diag History tab

The events that occur are determined by type (information, warning, error), flag, occurrence
of the event (timestamp) and message (port number & event code) (see Figure 16).
The IO-Link device can be uniquely assigned based on the port number.

cynapse®

Revision: 02 2022-D079891 en-23

4.6.2 Read out events using the “Detailed Device Status” parameter
Events of the type Error or Warning can additionally be read out using the index 0x25
“Detailed Device Status”. The parameter contains only events that occur (Appear).
The parameter consists of a series of data packages, each with a length of 3 bytes.

cynapse® provides a list of 11 entries. If the values are NULL, no event is active.
The first empty entry can be canceled because the active events are at the top of the list.

Each 3 byte entry is divided into Event Qualifier (byte 1) and Event Code (bytes 2 and 3).
The interpretation of the event codes can be found in the cynapse® operating manual.

Example
The cyclic query of the parameter “Detailed Device Status” index 0x25 yields the following result
for the first 9 bytes:

 0xE4185AE4185D000000

If you divide the answer into packages with a size of 3 bytes, you get the following result

 0xE4185A 0xE4185D 0x000000

There are two events. The third data package is empty and does not supply an entry, so the
search for events can be aborted here. The first two packages contain upcoming events.
The first byte provides information about the EventQualifier. In both cases, this is 0xE4 and
means that an occurring event (Appear) of the “Warning” type was sent by the device cynapse®.

 A detailed description of the EventQualifier can be found in the IO-Link specification.

The two subsequent bytes contain the event code described in the cynapse® operating manual.

 0x185A The user’s upper temperature threshold has been exceeded
 0x185D The user’s vibration threshold has been exceeded

 cynapse®

en-24 2022-D079891 Revision: 02

cynapse®

Revision: 02 2022-D079891

Revision history
Revision Date Comment Chapter
01 12/02/2019 New version All

02 08/16/2022 cynapse® Trademark,
Revision

All

AC: XXXXXXXX 2022-D062611Revision: 02

WITTENSTEIN alpha GmbH ꞏ Walter-Wittenstein-Straße 1 ꞏ 97999 Igersheim ꞏ Germany
Tel. +49 7931 493-0 ꞏ info@wittenstein.de

WITTENSTEIN ‒ one with the future

www.wittenstein-alpha.de

